Exam 2

Chemistry 333

Organic Chemistry I

Thursday April 2, 2009

Name:	KEY .
The exam is worth a total of 100 points; there are six questions. Please show all work to receive full credit for an answer.	
Californi	ng your name on this exam, you agree to abide by a State University, Northridge policies of academic and integrity
Molecula not neede	r models are allowed for this exam. Calculators are ed.

Good Luck!

1. Draw the structure of the products of the following reactions, *noting R or S configurations for asymmetric carbon atoms*. If a racemic mixture is formed, indicate why. (5 pts each)

(a)
$$\frac{H}{H}S$$

$$\frac{Cold, dilute}{KMnO_4, HO^-}$$

$$\frac{KMnO_4}{HO^-}$$

$$\frac{R}{H}R$$

$$\frac{H}{S}S$$

$$R$$

$$R$$

$$R$$

$$H$$

$$OH$$

(b)
$$H_3C$$
 H_3C H_3

2. Indicate a reagent or <u>sequence</u> of synthetic steps to accomplish the following transformations. **More than one step may be required!!!!** (4 pts each)

a.
$$\frac{NaCN}{DMSO}$$

b. $\frac{1. BH_3 \cdot THF}{2. H_2O_2}$

c. $\frac{CH_3}{S}$
 $\frac{CH_3}{S}$

1. $Hg(OAc)_2$,

CH₃OH

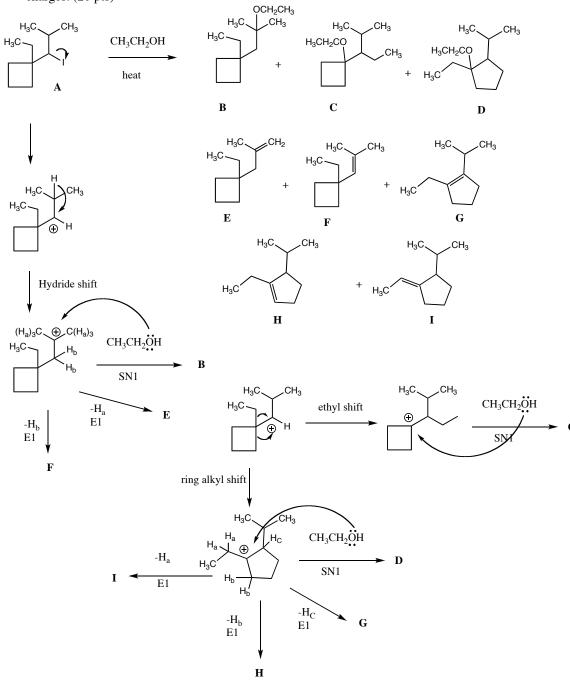
2. NaBH₄, HO

f.

.CH₃

OCH₃

meso


3. Draw the structure of the <u>major</u> **alkene** product of the following reaction, *indicating E, Z* configurations where appropriate (4 points each)

(a)
$$H_3C$$
 H_3C
 H_3C

(c)
$$CH_3$$
 $CH_3O^-Na^+$ CH_3 $CH_3O^-Na^+$ CH_3 $CH_$

USE SCRATCH PAPER ON BACK PAGES OF EXAM IF NECESSARY

4. Heating iodide **A** with ethanol leads to the formation of multiple products. Draw a **mechanism** to account for the formation of **TWO** substitution products and **TWO** elimination products shown below using the curved arrow notation. Be sure to include all relevant intermediates and formal charges. (20 pts)

5. Devise a synthetic sequence to prepare compound **A** from acetylene, isobutylene, and propyl iodide. Useful reagents for your synthesis include: KOH, Na/NH₃, NaNH₂, Br₂, CHBr₃. (20 points)

Bonus.

a. (5 points) SN2 reactions proceed with inversion of stereochemistry. Show how you could use **two** SN2 successive reactions to achieve the following transformation:

b. Ozonolysis of triene **A** produces the 1 mole each of **B**, **C**, and **D**. Draw the structure of triene A. (5 points)

Congratulations!

Score

 Page 1.
 /20

 Page 2.
 /24

 Page 3.
 /16

 Page 4.
 /20

 Page 5.
 /20

Bonus: _____/10
Total: /100